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Bernoulli numbers:

t
et − 1

=
∞∑

n=0

Bn
tn

n!
, |t | < 2π.

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , . . .; B2n+1 = 0 for n ≥ 1.

• Bn ∈ Q for all n.
• Denominators are completely determined (see later)
• Numerators are quite mysterious and deep.

Applications in number theory: E.g.,
• Euler’s formula

ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n, (n ≥ 1).
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• Related:
ζ(1− n) = −Bn

n
(n ≥ 2).

(Trivial zeros of ζ(s)).

• Kummer’s Theorem:
Let p be an odd prime. If p does not divide the numerator of
one of B2, B4, . . . , Bp−3, then the equation

xp + yp = zp

has no solutions in integers x , y , z satisfying p - xyz.

In other words: The First Case of FLT is true.
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Bernoulli polynomials:

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t | < 2π,

or equivalently

Bn(x) =
n∑

j=0

(
n
j

)
Bjxn−j .

Obvious connection with Bernoulli numbers:

Bn(0) = Bn(1) = Bn, (n ≥ 2)

Functional equation:

Bn(x + 1)− Bn(x) = nxn−1.

This gives rise to numerous applications; e.g.,

1n + 2n + . . . + xn =
1

n + 1
(Bn+1(x + 1)− Bn+1) .
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Asymptotic Behaviour

Let Tn(z) be the nth degree Taylor polynomial (about 0) of cos z
(when n is even) and of sin z (when n is odd).

Theorem (K.D., 1987)
For all z ∈ C and n ≥ 2 we have∣∣∣∣(−1)bn/2c (2π)n

2n!
Bn(z + 1

2)− Tn(2πz)

∣∣∣∣ < 2−n exp(4π|z|).

Corollary
We have uniformly on compact subsets of C,

(−1)k−1 (2π)2k

2(2k)!
B2k (z) → cos(2πz),

(−1)k−1 (2π)2k+1

2(2k + 1)!
B2k+1(z) → sin(2πz).
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Zeros

As a consequence, the real zeros of the Bernoulli polynomials
converge to the zeros of cos(2πz), resp. sin(2πz).

This had been known before (Lense, 1934; Inkeri, 1959).

It also gives an indication (though not a proof) that the complex
zeros behave like those of the polynomials Tn(z) (studied by
Szegő, 1924).

What was proven, though, is the existence of a parabolic
zero-free region (K.D., 1983/88).
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Why study zeros of Bernoulli polynomials?

• Because they are there;
• there are actually applications:

To show that for fixed k ≥ 2 the diophantine equation

1k + 2k + . . . + xk = yz

has at most finitely many solutions in x , y , z, one needs to have
some knowledge of the zeros of the polynomial (in x) on the
left.

But this is, essentially, a Bernoulli polynomial.

This equation, and generalizations, have been extensively
studied during the past 20 years.
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Multiple zeros

Main topic of this talk:
Can Bernoulli polynomials have multiple zeros?

This was partly answered by Brillhart:

Theorem (Brillhart, 1969)

(1) B2n+1(x) has no multiple zeros for any n ≥ 0.
(2) Any multiple zero of B2n(x) must be a zero of x2 − x − b,

with b a positive odd integer.

The main result is

Theorem (K.D., 2008)

B2n(x) has no multiple zeros.
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Sketch of Proof

Some other elementary properties of Bernoulli polymomials:

Bn(
1
2) = (21−n − 1)Bn,

B′
n(x) = nBn−1(x).

With these, a Taylor expansion now gives

B2m(x) =
m∑

j=0

(
2m
2j

)
(21−2j − 1)(x − 1

2)2(m−j)B2j . (1)

Let xb be a zero of x2 − x − b. Then

4(xb − 1
2)2 = 4x2

b − 4xb + 1 = 4b + 1,

and with (1) we get

22mB2m(xb) =
m∑

j=0

(
2m
2j

)
(4b + 1)m−j(2− 22j)B2j . (2)
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Main ingredients:

Theorem (von Staudt, 1840; Clausen, 1840)
• A prime p divides the denominator of B2n if and only if

p − 1 | 2n.

• If p − 1 | 2n, then pB2n ≡ −1 (mod p).

Fix an m ≥ 1, and consider primes p with p − 1 | 2m.

If p − 1 = 2m, or if p − 1 < 2m and p | 4b + 1,
then easy to see: B2m(xb) 6= 0.

Recall:

22mB2m(xb) =
m∑

j=0

(
2m
2j

)
(4b + 1)m−j(2− 22j)B2j .
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Remaining case

p − 1 < 2m and p - 4b + 1:

Set q :=
2m

p − 1
; then q ∈ Z, 2 ≤ q ≤ m.

Multiply both sides of (2) with p; then

• By von Staudt - Clausen:

pB2j ≡


−1 (mod p) for 2j = r(p − 1),

r = 1, 2, . . . , q;

0 (mod p) for all other j .

• By Fermat’s Little Theorem, for 2j = r(p − 1),

2− 22j = 2− 2r(p−1) ≡ 2− 1 = 1 (mod p).
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• Since p - 4b + 1,

(4b + 1)j =
(
(4b + 1)

p−1
2

)r
≡ εr

b (mod p),

where

εb =

{
1, 4b + 1 quadratic residue (mod p);

−1, 4b + 1 quadratic nonresidue (mod p).

So (2) becomes

pB2m(xb) ≡ −εq
b

q∑
r=1

(
q(p − 1)

r(p − 1)

)
εr

b (mod p).

When εb = 1, sum is well-known to be ≡ 1 (mod p) (Hermite,
1876). So

pB2m(xb) ≡ −1 (mod p),

and there can be no multiple zero.
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Remaining case, εb = −1: Set

Sp(q) :=

q∑
r=1

(
q(p − 1)

r(p − 1)

)
(−1)r .

Lemma

Sp(q) ≡


−1 (mod p), q odd;

0 (mod p), q = k(p + 1);

1 (mod p), q even, q 6= k(p + 1).

Proof : Case q odd is obvious, by symmetry.
The other cases are more difficult; (2p − 2)th roots of units are
used; Sp(q) is considered a linear recurrence sequence.
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Lemma means:

The only case that remains open is the case p + 1 | q and
εb = −1.

To deal with this case, we use the fact that if xb is a multiple
zero of B2m(x), it must be a zero of B2m−1(x).

This is easy to exclude, using again the Lemma.
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Proof of the Lemma (sketch)

With Hermite’s congruence

q∑
j=0

(
q(p − 1)

j(p − 1)

)
≡ 2 (mod p)

it is easy to see (by just adding congruences) that the Lemma
is equivalent to

bq/2c∑
j=0

(
q(p − 1)

2j(p − 1)

)
≡


1 (mod p) for q odd,

2 (mod p) for q even, p + 1 - q,
3
2 (mod p) for p + 1 | q.
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The key step is the following

Lemma
Let p be an odd prime and ζ a primitive (2p − 2)th root of unity.
Define, for q = 1, 2, . . .,

Tp(q) :=

2p−2∑
k=1

(
1 + ζk

)(p−1)q
.

Then

Tp(q) = (2p − 2)

bq/2c∑
j=0

(
q(p − 1)

2j(p − 1)

)
.

The proof is easy: Use a binomial expansion and change the
order of summation.
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By the theory of linear recurrence relations with constant
coefficients:

• {Tp(q)}, q = 1, 2, . . ., is such a sequence;

• order is at most 2p − 2;

• characteristic polynomial has

(1 + ζk )p−1, k = 1, 2, . . . , 2p − 2,

as its roots.

This motivates the following lemma.
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Lemma
Let p be an odd prime and fp(x) the unique monic polynomial
that has (1 + ζk )p−1, k = 1, 2, . . . , 2p − 2, as its roots.

Then

fp(x) ≡ x
2p−3∑
n=0

anx2p−3−n (mod p),

where for 0 ≤ n ≤ p − 2 we have

an ≡

{
(m + 1)2 (mod p) for n = 2m,

(m + 1)(m + 2) (mod p) for n = 2m + 1,

and for p − 1 ≤ n ≤ 2p − 3,

an ≡ −a2p−3−n (mod p).

Proof uses various congruences and identities for binomial
coefficients and finite sums.
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The conjecture that

Tp(q) ≡


−2 (mod p) for q odd,

−4 (mod p) for q even, p + 1 - q,

−3 (mod p) for p + 1 | q,

would complete the proof. We can prove this as follows:

• Verify it for all q ≤ 2p.
This can be done by elementary (but tricky) manipulations of
congruences for binomial coefficients.

• Then show that the numbers given above satisfy the
recurrence relation

a0Tp(n)+a1Tp(n−1)+ . . .+a2p−3Tp(n−2p +3) ≡ 0 (mod p)

for all n ≥ 2p − 2, with the aj as given in the previous Lemma.
This is again elementary but tricky.

The proof is complete.

Karl Dilcher On Multiple Zeros of Bernoulli Polynomials



The conjecture that

Tp(q) ≡


−2 (mod p) for q odd,

−4 (mod p) for q even, p + 1 - q,

−3 (mod p) for p + 1 | q,

would complete the proof. We can prove this as follows:

• Verify it for all q ≤ 2p.

This can be done by elementary (but tricky) manipulations of
congruences for binomial coefficients.

• Then show that the numbers given above satisfy the
recurrence relation

a0Tp(n)+a1Tp(n−1)+ . . .+a2p−3Tp(n−2p +3) ≡ 0 (mod p)

for all n ≥ 2p − 2, with the aj as given in the previous Lemma.
This is again elementary but tricky.

The proof is complete.

Karl Dilcher On Multiple Zeros of Bernoulli Polynomials



The conjecture that

Tp(q) ≡


−2 (mod p) for q odd,

−4 (mod p) for q even, p + 1 - q,

−3 (mod p) for p + 1 | q,

would complete the proof. We can prove this as follows:

• Verify it for all q ≤ 2p.
This can be done by elementary (but tricky) manipulations of
congruences for binomial coefficients.

• Then show that the numbers given above satisfy the
recurrence relation

a0Tp(n)+a1Tp(n−1)+ . . .+a2p−3Tp(n−2p +3) ≡ 0 (mod p)

for all n ≥ 2p − 2, with the aj as given in the previous Lemma.
This is again elementary but tricky.

The proof is complete.

Karl Dilcher On Multiple Zeros of Bernoulli Polynomials



The conjecture that

Tp(q) ≡


−2 (mod p) for q odd,

−4 (mod p) for q even, p + 1 - q,

−3 (mod p) for p + 1 | q,

would complete the proof. We can prove this as follows:

• Verify it for all q ≤ 2p.
This can be done by elementary (but tricky) manipulations of
congruences for binomial coefficients.

• Then show that the numbers given above satisfy the
recurrence relation

a0Tp(n)+a1Tp(n−1)+ . . .+a2p−3Tp(n−2p +3) ≡ 0 (mod p)

for all n ≥ 2p − 2, with the aj as given in the previous Lemma.

This is again elementary but tricky.

The proof is complete.

Karl Dilcher On Multiple Zeros of Bernoulli Polynomials



The conjecture that

Tp(q) ≡


−2 (mod p) for q odd,

−4 (mod p) for q even, p + 1 - q,

−3 (mod p) for p + 1 | q,

would complete the proof. We can prove this as follows:

• Verify it for all q ≤ 2p.
This can be done by elementary (but tricky) manipulations of
congruences for binomial coefficients.

• Then show that the numbers given above satisfy the
recurrence relation

a0Tp(n)+a1Tp(n−1)+ . . .+a2p−3Tp(n−2p +3) ≡ 0 (mod p)

for all n ≥ 2p − 2, with the aj as given in the previous Lemma.
This is again elementary but tricky.

The proof is complete.

Karl Dilcher On Multiple Zeros of Bernoulli Polynomials



The conjecture that

Tp(q) ≡


−2 (mod p) for q odd,

−4 (mod p) for q even, p + 1 - q,

−3 (mod p) for p + 1 | q,

would complete the proof. We can prove this as follows:

• Verify it for all q ≤ 2p.
This can be done by elementary (but tricky) manipulations of
congruences for binomial coefficients.

• Then show that the numbers given above satisfy the
recurrence relation

a0Tp(n)+a1Tp(n−1)+ . . .+a2p−3Tp(n−2p +3) ≡ 0 (mod p)

for all n ≥ 2p − 2, with the aj as given in the previous Lemma.
This is again elementary but tricky.

The proof is complete.
Karl Dilcher On Multiple Zeros of Bernoulli Polynomials



Thank you

Karl Dilcher On Multiple Zeros of Bernoulli Polynomials


